본문 바로가기

Paper review30

[Paper review] Densely Connected Convolutional Networks(DenseNet, 2017) DenseNet은 ResNet이 나오고 2년 후에 나온 Skip-connection을 base로 작성된 논문이다. ResNet보다 적은 파라미터, (Skip-connection을 이해하였다는 가정하에) 쉽게 이해되는 모델 구조로 인해 리뷰할 두번째 논문으로 선택하였다. DenseNet 논문 리뷰 DenseNet은 말 그대로 CNN의 채널을 Dense하게 연결한 네트워크이다. 논문의 앞 부분부터 천천히 살펴보며 어째서 이러한 구조를 선택하였고 왜 좋은지에 대한 Discussion도 알아보겠다. DenseNet 구조를 제안한 이유 리뷰한 논문이 많지 않기에 이 논문 역시 읽고 나서 블로그에서 여러개의 리뷰를 읽어보았다. 대다수의 블로그에서 아래 글에 대한 언급은 없었는데 이 문구를 보고 Xception, S.. 2022. 6. 25.
[Paper review] Deep Residual Learning for Image Recognition(ResNet, 2015) 저번 한 달간 암석 분류 프로젝트를 진행하면서 이를 위하여 CNN모델을 생성하였습니다. 초반에 VGG base로 모델을 만들었는데 심하게 과대 적합하여 당시 알고 있던 방법을 총동원해도 val-accuracy 90%를 넘기는 게 쉽지 않았습니다. 이때 모델을 ResNet base로 바꾼 다음 Data augmentation을 사용하여 거의 100프로에 가까운 val-accuracy를 가지는 모델을 만들었습니다. 성공적으로 플젝을 제출하고 구조상 큰 차이가 없음에도 어떻게 큰 성능 발전을 보여준지 궁금하여 ResNet을 읽어 보았고 정리한 내용을 리뷰해보겠습니다. ResNet 논문 리뷰 Abstract 부분에서 ResNet구조가 어떠한 의미로 고안되었는지 말해줍니다. 깊은 네트워크 학습이 어렵기에 이 문제.. 2022. 6. 19.