본문 바로가기

전체 글85

Training data-efficient image transformers& distillation through attention 리뷰(DeiT, 2021) MIM 방법론 중 대표격인 BeiT를 읽으며 큰 생각없이 동시에 읽었는데 이름빼고는 분야가 완전히 달랐다. 그렇지만 ViT에 ConvNet을 distillation하는 방법에 흥미도 생겼고 결과도 꽤 좋은것 같아 먼저 리뷰해보려한다. Abstract ViT는 고성능이지만 좋은 성능을 위해 많은 데이터 학습이 필요하다는 고질적인 문제점이 있다. 즉 ViT는 자원효율이 낮다고 볼 수 있다. 이 논문에서 저자는 오직 ImageNet만을 사용해 conv-free 모델을 학습시키는데 이를 위해 convnet의 정보를 transfer할 수 있는 token base distillation방법을 제안한다. Introduction Convnet에서 ViT로의 발전을 언급한 후 ViT의 단점인 적은 데이터셋에는 훈련이 잘.. 2024. 3. 6.
ViT구현(Pytorch) ViT를 읽고 Pytorch로 구현해보았다. 원본 코드는 jax로 구현되어 있기에 깃허브에서 star가 높은 레포를 참고해 진행하였다. dropout은 생략하고 구현했으니 주의! 참고한 레포 링크: https://github.com/lucidrains/vit-pytorch GitHub - lucidrains/vit-pytorch: Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification wit Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single trans.. 2024. 2. 6.
Masked Autoencoders Are Scalable Vision Learners(MAE, 2022) 리뷰 이전에 CL과 MIM의 비교 논문을 읽고 MIM에 흥미가 생겨 읽어본 논문이다. 다양한 MIM 논문 중 이를 고른 이유는 저자가 Kaiming he였다는 점이 한몫했던 것 같다. Abstract 초록에서는 이 논문의 방법론, 실험, contribution을 짧게 설명했다. 눈에 띄는 부분만 요약하면 아래와 같다. 1. Input image를 random하게 mask하고 복원하는 masked auto encoders 소개 2. Encoder와 decoder 구조를 사용하며 encoder는 mask token을 사용하지 않는 비대칭 구조 3. 훈련시간을 3배 이상 줄이며 기존 방법론과 유사하거나 더 좋은 성능을 보여줌. Introduction 하드웨어 발전으로 모델의 크기는 계속 커지나 그에 걸맞은 labe.. 2024. 1. 29.
What Do Self-Supervised Vision Transformers Learn?(2023) 리뷰 2023년 ICLR에 게재된 논문으로 Prescient Design, Genentech와 Naver AI Lab 소속이신 박남욱 님이 1저자로 저술한 논문이다. CL과 MIM의 속성을 실험을 통해 비교한 논문이고 대부분이 실험-분석의 반복으로 이루어져 있다. Abstract Self supervised learning(SSL)의 방법론 중 두 가지 Contrastive learning(CL)과 Masked image modeling(MIM)을 비교하는 실험을 여럿 진행하여 속성을 분석했으며 초록에서는 CL을 베이스로 짧게 요약해서 포인트를 짚어준다. CL이 MIM보다 global한 패턴 파악에 좋다 CL은 저주파 신호는 MIM은 고주파 신호를 주로 학습한다. CL은 출력 부분의 layer가 MIM은 입력.. 2024. 1. 23.
Learning Transferable Visual Models From Natural Language Supervision(CLIP, 2021)리뷰 part-2 이번에는 CLIP의 Experiments part에 대해 살펴보겠다. 크게 Zero-shot transfer과 Representation learning으로 구성되어 있다. Zero-shot Transfer Motivation 이 논문에서는 대게 사용하는 Representation learning보다는 Zero-shot transfer를 통해 model의 task learning성능을 측정하였다고 한다. Representation learning은 fine-tune, linear-probing과 같이 모델을 추가 학습시키는 것이고 Zero-shot transfer는 말 그대로 라벨 없이 성능을 측정하는 것을 의미한다. Using CLIP for zero-shot transfer part1에서 CLIP이 .. 2024. 1. 18.
Learning Transferable Visual Models From Natural Language Supervision(CLIP, 2021)리뷰 part-1 Contrastive learning Language-Image Pre-training(CLIP)은 openAI가 발표한 Constrative Learning을 사용해 Multimodal data의 representation을 학습하는 모델이다. Abstract기존의 CV모델들은 제한된 라벨 출력을 가지는 문제(restricted label problem)을 가지고 있었다. 이는 모델의 사용성을 저하시키는데 간단한 예시로 기존에 알지 못한 새로운 class가 출현했을때 대처하지 못하는 경우가 있다.  저자는 이를 image에 대한 caption을 예측하는 pretrain방식을 사용해 해결하려했다. 이 방식을 통해 훈련된 CLIP은 여러 task에 zero-shot transfer가 가능하며 기존의 Ful.. 2024. 1. 13.
Learning to Compare Relation Network for Few-Shot Learning(RelationNet, 2018) 리뷰 Few shot learning 서베이 논문 중 episode training부분이 이해가 잘 안됐다. 확실히 이해하기 위해 이 테크닉을 사용하는 논문 중 그나마 짧고 쉬워 보이는 RelationNet을 읽어보았다. 기존 episode training모델들과 구현상에 큰 차이는 없으며 RelationNet보다는 episode training에 조금 더 중점적으로 리뷰해보겠다. Abstract & Introduction Abstract에서는 이 논문에는 contribution을 크게 두 가지로 서술한다. end-to-end 학습이 가능 Few-shot learning과 Zero-shot learning에서 기존에 비해 높은 성능 달성 이후 이 논문에서 사용한 episode training방법에 대해 간략히.. 2024. 1. 6.
GAN구현(Pytorch) 논문을 읽을때는 구현이 어려워 보이지는 않았었다. 자세한 구현내용은 깃허브 링크로 대체했는데 모델이 Theano로 구현돼 있었고 논문이 나온 후 GAN의 아키텍처가 많이 발전돼서 정확히 논문 그대로의 예제를 찾기 어려웠다. 그러다 보니 구현 중에 다양한 예제를 참고했으며 이것저것 시도해 보니 데이터셋이 쉬워서 그런지 어떤 방식으로도 생성엔 문제가 없는 것 같다. Maxout을 사용한 이 레포의 모델을 많이 참고했다. Generator class Generator(nn.Module): def __init__(self, input_dim=100, output_dim = 784): super(Generator, self).__init__() self.input_dim = input_dim self.output.. 2023. 12. 22.